ОПРЕДЕЛЕНИЕ МИКОТОКСИНОВ В АРАХИСЕ

методом тандемной жидкостной хромато-массспектрометрии с помощью EXPEC L-Chrom MS

Введение

Микотоксины являются продуктами жизнедеятельности некоторых видов плесневых грибов, встречающихся в продуктах питания. Эти соединения чрезвычайно опасны для здоровья человека, поэтому очень важно контролировать их содержание. Сложность выявления микотоксинов хроматографическими методами связана с широким разнообразием их химической природы и свойств, а также с присутствием большого количества непредсказуемых примесей в продуктах.

Метод тандемной хромато-массспектрометрии дает возможность селективного высокочувствительного определе-

ния большого количества соединений одновременно. Одним из преимуществ данного метода является возможность «выбирать» целевые ионы с помощью системы квадруполей, что позволяет сократить количество этапов очистки образцов от примесей в процессе пробоподготовки.

Определение микотоксинов в арахисе проводили на жидкостном хромато-массспектрометре EXPEC L-Chrom MS в соответствии с ГОСТ 34140-2017. В ходе анализа определяли следующие соедине-

- афлатоксин В1,
- афлатоксин G2,
- афлатоксин В2,
- T-2,
- афлатоксин G1,
- HT-2.

Подготовка пробы к анализу

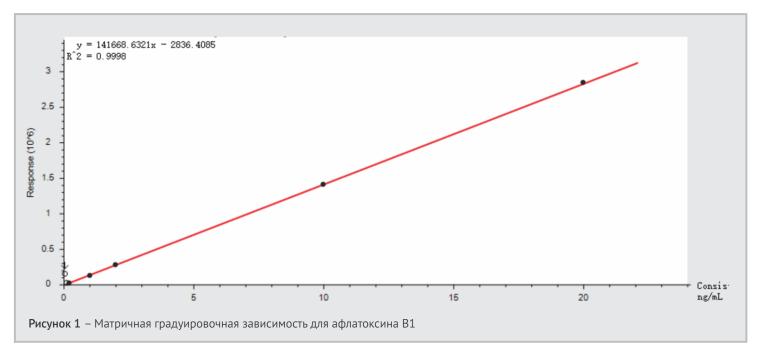
- Пробу измельчённого гомогенизированного арахиса массой 5 г заливают 25 см³ смеси ацетонитрила, воды и уксусной кислоты, перемешивают в течение 60 мин.
- Полученный экстракт центрифугируют.
- 500 мм³ экстракта смешивают с 500 мм³ раствора, используемого в качестве подвижной фазы А при хроматографическом анализе, центрифугируют при 4 °С и дозируют в хроматограф.

Хроматографические условия

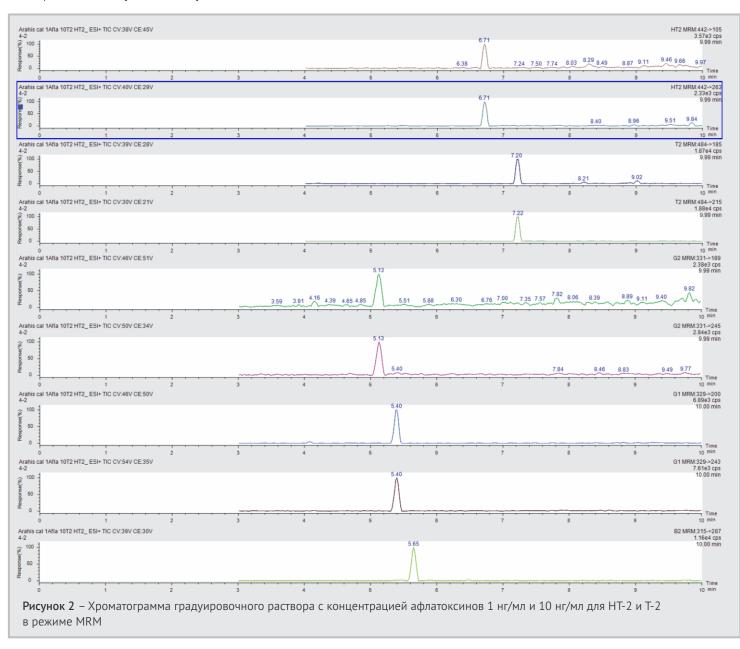
Хроматографическая колонка		Spursil C18 100 x 3 мм; 3 мкм (Dikma)	
Температура термостата колонки, °С		45	
Режим элюирования		Градиентный	
Компонент А		$890~{\rm cm^3}$ воды, $100~{\rm cm^3}$ метанола, $10~{\rm cm^3}$ уксусной кислоты и $0,2~{\rm r}$ ацетата аммония	
Компонент В		970 см ³ метанола, добавляют 20 см ³ деионизированной воды, 10 см ³ уксусной кислоты и 0,2 г ацетата аммония	
Скорость потока элюента, мл/мин		0,6	
Объем инжекции, мкл		35	
Параметры масс-спектрометрического детектора:			
Режим ионизации:		Электроспрей, ESI (+)	
Параметры МРМ-переходов			
Микотоксин	Ион-предшественник, m/z		Ион-продукт 1 / он-продукт 2, m/z
Афлатоксин В1	313		128/241
Афлатоксин В2	315		259/287
Афлатоксин G1	329		243/200
Афлатоксин G2	331		245/189
НТ-2 токсин	442		263/105
Т-2 токсин	484		215/185

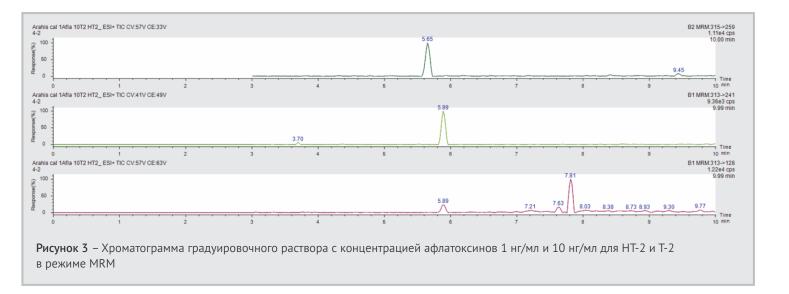
Оборудование

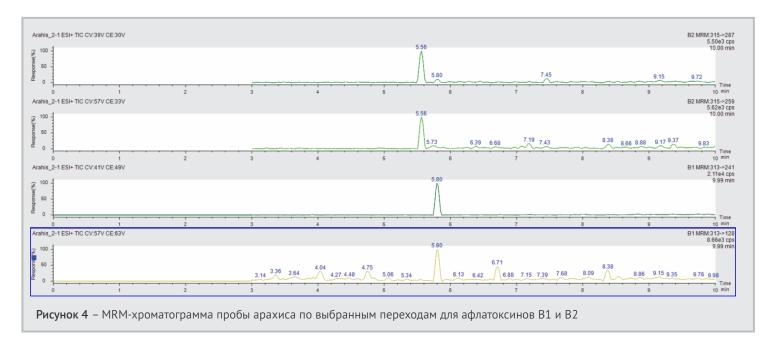
Жидкостный хромато-массспектрометр с тройным квадруполем EXPEC L-Chrom MS, оснащённый УВЭЖХ системой с максимальным рабочим давлением 130 МПа. УВЭЖХ система состоит из следующих блоков:


- бинарный насос (с градиентом на стороне высокого давления);
- автодозатор с функцией охлаждения образцов;
- термостат колонок;
- кран переключения потока в масс-детектор или на сброс.

Обработка полученных данных производилась с помощью программного обеспечения MassExpert.


Количественное определение микотоксинов данным методом из-за возможных помех необходимо проводить при помощи градуировки на чистой матрице. Для построения градуировочных зависимостей использовали «чистую матрицу» - арахис, не содержащий определяемых микотоксинов. Получали экстракт, в который вносили известное количество микотоксинов. На Рисунке 1 приведена градуировочная зависимость для афлатоксина В1.




Выпуск №2 / 2023 5 labconcept.ru

Пример хроматограмм матричного градуировочного раствора с концентрацией афлатоксинов 1 нг/мл и 10 нг/мл для НТ-2 и Т-2 в режиме MRM приведен на **Рисуноке 2** и **Рисунке 3**.

Результаты

Проведены оптимизация и подбор условий для определения каждого из исследуемых микотоксинов.

В результате испытаний были определены массовые доли афлатоксинов:

- B1 7 мкг/кг,
- B2 3 мкг/кг.

Остальные микотоксины в пробе не обнаружены.

Заключение

Проведенный эксперимент на примере определения микотоксинов доказал, что жидкостный хромато-масс-спектрометр EXPEC L-Chrom MS может быть использован для реализации анализов в области контроля качества пищевых продуктов в соответствии с существующими в нашей стране нормативными документами. На EXPEC L-Chrom MS используется технология адаптивной регулировки двойного высокочастотного источника питания с обратной связью, обеспечивающая высокостабильную и симметричную подачу напряжения на пары стержней квадрупольного масс-фильтра, благодаря чему улучшается селективность анализа. Высокие показатели чувствительности прибора позволяют обнаруживать низкие концентрации микотоксинов там, где другие приборы и инструментальные методы их не видят. Технология быстрой и эффективной доставки ионов в масс-анализатор (без потерь), примененная в масс-спектрометре EXPEC L-Chrom MS, а также быстрое удаление ионов из соударительной ячейки обеспечивают высокую чувствительность анализа и отсутствие «эффекта памяти», что гарантирует воспроизводимые результаты анализа даже при вводе «грязных» проб.

labconcept.ru ______ Выпуск №2 / 2023 **7**