ОПРЕДЕЛЕНИЕ БЕНЗ(A)ПИРЕНА В ПОЧВЕ

методом ВЭЖХ с помощью жидкостного хроматографа LicArt 62

Введение

Высокоэффективная жидкостная хроматография – одна из наиболее распространенных техник количественного анализа, применяемая для разделения сложных смесей органических соединений и высокочувствительного определения целевых компонентов. Для жидкостных хроматографов LicArt 62 доступен широкий спектр детекторов, что позволяет применять их практически в любой области.

Жидкостные хроматографы LicArt 62 – это высококачественные приборы, подходящие для проведения анализов любого уровня сложности.

LicArt 62 представляют собой гибкие модульные системы, обладающие ультранизким уровнем перекрестного загрязнения (всего 0,003 %). Эти особенности делают приборы одновременно как универсальными, так и отвечающими всем актуальным требованиям современных аналитических лабораторий. Продвинутое программное обеспечение на русском языке значительно облегчает обработку результатов анализа и обеспечивает высокий уровень безопасности данных.

Одной из наиболее часто встречающихся задач является определение бенз(а)пирена в различных объектах окружающей среды, в т.ч. в почвах.

Полициклические ароматические углеводороды (ПАУ), к которым относится бенз(а)пирен, образуются при неполном сгорании органических соединений и чаще всего встречаются в продуктах переработки угля и нефти, поэтому основными источниками загрязнения окружающей среды являются предприятия энергетического комплекса, транспорт, химическая и нефтеперерабатывающая промышленность. Бенз(а)пирен вместе с другими ПАУ оседает в частицах сажи на поверхности почвы; предельно допустимая концентрация бенз(а)пирена в почве составляет 0,02 мг/кг.

В качестве объектов анализа для данной статьи были взяты образцы почвы, отобранной на территории промышленного предприятия. Анализ производился по методике МУК 4.1.1255-4.1.1274-03.

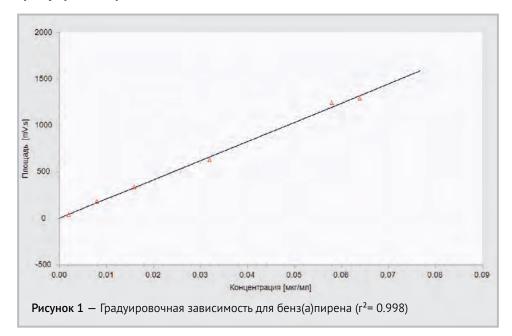
Оборудование

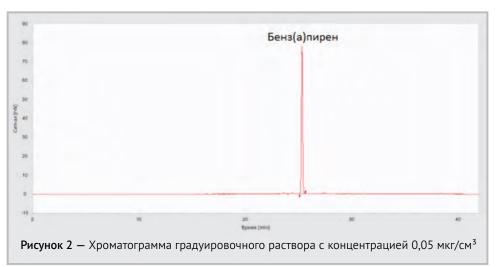
Анализ образцов производился на жидкостном хроматографе LicArt 62 в следующей комплектации:

- четырехканальный насос QP-62d для создания градиента на стороне низкого давления;
- спектрофлуориметрический детектор RF-62E;
- термостат колонок Т-85;
- автодозатор S-42d с модулем для дегазации промывочного раствора.

Хроматографические условия

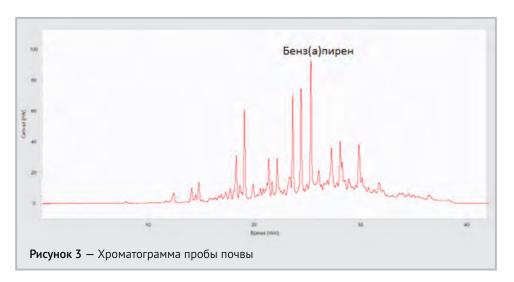
Температура термостата колонки, °С	35
Режим элюирования	Градиентный
Компонент А	Вода
Компонент В	Ацетонитрил
Скорость потока элюента, мл/мин	1,0
Продолжительность регистрации хроматограммы, мин	42
Объем вводимой дозы, мкл	20
Параметры флуориметрического детектора	
Длина волны возбуждающего излучения, нм	340
Длина волны детектирования, нм	425
Чувствительность детектора	medium
Усиление сигнала	1




Подготовка пробы к анализу

- Пробу почвы массой 1 г, залили 15—20 см³ хлористого метилена и перемешивали в течение 30 мин.
- Полученный экстракт поместили в колбу для отгонки растворителя. Экстракцию повторили.
- Объединенные экстракты упарили до объема 1—2 см³, к остатку прилили 3—5 см³ гексана и вновь упарили до объема менее 0,5 см³. К полученному экстракту добавили 2 см³ гексана.
- Заполнили стеклянную колонку оксидом алюминия, нанесли на нее экстракт, промыли гексаном и провели элюирование ПАУ 40 см³ смесью гексан-хлористый метилен (80:20 % об.).
- Элюат упарили досуха, остаток растворили в 1 см³ ацетонитрила.
- После этого приступили к дозированию в хроматограф.

Градуировка производилась по 6 точкам.



Проведение хроматографического анализа

Анализ производили на колонке Supelcosil РАН (длина 150 мм, диаметр 4,6 мм, размер частиц 5 мкм).

В результате анализа рассчитанная массовая доля бенз(а)пирена в почве составила 0,05 мг/кг, что превышает ПДК (0,02 мг/кг).

Выводы

Высокоэффективные жидкостные хроматографы LicArt 62 могут успешно применяться для различных задач экологического мониторинга.